THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5000 Analysis I 2015-2016

Problem Set 8: Towards Topology and Functional Analysis

- 1. Let $X = \{a, b, c\}$ and let $\mathfrak{I} = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\}$. Show that \mathfrak{I} defines a topology on X.
- 2. Let X be a set and let \mathfrak{I} be the collection of all subsets U of X such that $X \setminus U$ either is finite or is X. Show that \mathfrak{I} defines a topology on X, which is called the **finite complement topology**.
- 3. Suppose that \mathcal{B} is a basis of a set X. Let \mathfrak{I} be the collection of all subsets U of X such that for all $x \in U$, there exists $B \in \mathcal{B}$ such that $x \in B \subset U$.

Show that \mathfrak{I} defines a topology on X, which is called the **topology generated by** \mathcal{B} .

4. Let $\mathcal B$ be the collection of all intervals in $\mathbb R$ which are in the form

$$(a, b) = \{x \in \mathbb{R} : a < x < b\}$$

Show that \mathcal{B} is a basis of \mathbb{R} .

5. Let \mathcal{B} be the collection of all disks in \mathbb{R}^2 which are in the form

$$D(\overrightarrow{x_0}, r) = \{ \overrightarrow{x} \in \mathbb{R}^2 : |\overrightarrow{x} - \overrightarrow{x_0}| < r \},\$$

where r > 0.

Show that \mathcal{B} is a basis of \mathbb{R}^2 .

- 6. Let $\{x_n\}$ be a convergent sequence in a Hausdorff space X. Show that the limit of the sequence $\{x_n\}$ is unique.
- 7. Let $X = \{(a_1, a_2, a_3) : a_1, a_2, a_3 \in \{0, 1\}\}$. Define $d : X \times X \to \mathbb{R}$ be the number of distinct components.

Show that d defines a metric on X.

8. Let $X = \{a, b, c\}$ and define $d: X \times X \to \mathbb{R}$ by

$$d(x,y) = \begin{cases} 0 & \text{if } x = y, \\ \\ 1 & \text{if } x \neq y. \end{cases}$$

- (a) Show that d defines a metric on X.
- (b) If \mathfrak{I} is the metric topology induced by the metric d, describe \mathfrak{I} explicitly.
- 9. Define $\|\cdot\|: \mathbb{R}^n \to \mathbb{R}$ by

$$||(x_1, x_2, \cdots, x_n)|| = \max\{x_1, x_2, \cdots, x_n\}$$

Show that $\|\cdot\|$ defines a norm on \mathbb{R}^n .

10. Let $\mathcal{R}[a, b]$ be the collection of all (Riemann) integrable functions on [a, b]. Define $\|\cdot\| : \mathcal{R}[a, b] \to \mathbb{R}$ by

$$\|f\| = \sqrt{\int_a^b |f|^2}.$$

Does $\|\cdot\|$ define a norm on $\mathcal{R}[a, b]$?

11. Let C[a, b] be the collection of all continuous functions on [a, b]. Define $\|\cdot\| : C[a, b] \to \mathbb{R}$ by

$$\|f\| = \sqrt{\int_a^b |f|^2}.$$

Does $\|\cdot\|$ define a norm on $\mathcal{C}[a, b]$?